Evaluation of the prebiotic effect of hydrolates on Staphlylococcus spp. present in the skin microbiota

Main Article Content

Marco Aurélio da Silva
Juliana de Oliveira Soares
Leonardo Mendes Bella
Carlos Rocha Oliveira

Abstract

By synthesizing secondary metabolites, also known as active ingredients, which can act differently on other living beings, they are increasingly attracting the interest of the pharmaceutical and cosmetic industries, since they can develop formulations containing prebiotics, substances that help in the control of the cutaneous microbiome. In this work, the prebiotic effects of rosemary, lemongrass, lemongrass, lavender and mint hydrolates were evaluated. The growth rate of the Staphlylococcus aureus (S. aureus) strain was significantly lower (* p <0.05), when compared to the Staphlylococcus epidermidis (S. epidermidis) strain, after treatment with rosemary, mint and herb hydrolates lemon balm. Regarding the results of co-cultivation, it was observed qualitatively that the strain of S. aureus failed to achieve satisfactory growth in the presence of S. epidermidis associated with hydrolates, since the "turning point" of mannitol agar was not reached fully, suggesting that these by-products from the extraction of essential oils may have a prebiotic effect.

Article Details

How to Cite
Aurélio da Silva, M. ., de Oliveira Soares, J. ., Mendes Bella, L. ., & Rocha Oliveira, C. (2020). Evaluation of the prebiotic effect of hydrolates on Staphlylococcus spp. present in the skin microbiota. Brazilian Journal of Biomedical Sciences, 1(1), 7. https://doi.org/10.46675/rbcbm.v1i1.7
Section
Original article

References

1- FRANZENER, G.; MARTINEZ-FRANZENER, A.S; STANGARLIN, J.R.;CZEPAK, M. P.; SCHWAN-ESTRADA, K.R.F. Maria Eugênia Silva Cruz. Atividades antibacteriana, antifúngica e indutora de fitoalexinas de hidrolatos de plantas medicinais. Semina: Ciências Agrárias, Londrina, 28(1):29-38, 2007.
2- ARAÚJO, J.C.L.V.; LIMA, E.O.; CEBALLOS, B.S.O.; FREIRE, K.R.L.; SOUZA, E.L.; SANTOS FILHO, L. Ação antimicrobiana de óleos essenciais sobre microrganismos potencialmente causadores de infecções oportunistas. Rev. Patol. Trop. 33: 55-64, 2004.
3- SIQUI, A.C.; SAMPAIO, A.L.F.; SOUSA, M.C.; HENRIQUES, M.G.M.O.; RAMOS, M.F.S. Óleos essenciais - potencial anti-inflamatório. Biotecnologia, Ciência e Desenvolvimento 16: 38-43, 2000.
4- MORO, G.; ARSLANOGLU, S.; STAHL, B. A mixture of prebiotic oligosaccharides reduces the incidence of atopic dermatitis during the first six months of age. Arch Dis Child. 91:814–819, 2006.
5- GRUBER C, VAN STUIJVENBERG M, MOSCA F, et al. Reduced occurrence of early atopic dermatitis because of immunoactive prebiotics among low-atopy-risk infants. J Allergy Clin Immunol. 126:791–797,2010.
6- KANTOR, R., & SILVERBERG, J. I. Environmental risk factors and their role in the management of atopic dermatitis. Expert review of clinical immunology, 13(1), 15–26, 2017. https://doi.org/10.1080/1744666X.2016.1212660
7- SIMMERING R, BREVES R. Pre- and probiotic cosmetics. Hautarzt. 60(10):809-14, 2009. doi: 10.1007/s00105-009-1759-4.
8- MARLIES, W.; CARSTEN, L.; FRANS, C. The Danish Environmental Protection Agency/ Survey of cosmetic products with "probiotic" or "prebiotic" claims. Survey of chemical substances in consumer products No. 171 November 2018.
9- ANGÉLICO, E.C.; COSTA, J.G.M.; GALVÃO, F.F.R.; SANTOS, F.O..; RODRIGUES, O.G. Composição química do óleo essencial das folhas de Croton heliotropiifolius Kant (Sinônimo C. rhamnifolius): resultados preliminares. Revista de Biologia e Farmácia, 7(1), 2012.
10. KAUR N., CHEN C.-C., LUTHER J., KAO J.Y. Intestinal dysbiosis in inflammatory bowel disease. Gut Microbes. 2011; 2:211–216. doi: 10.4161/gmic.2.4.17863
11. GRICE E.A., SEGRE J.A. The human microbiome: Our second genome. Annu. Rev. Genomics Human Genet. 2012; 13:151–170. doi: 10.1146/annurev-genom-090711-163814.
12. REN T., GLATT D.U., NGUYEN T.N., et al. 16 S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids. Environ. Microbiol. 2013; 15:535–547. doi: 10.1111/1462-2920.12000.
13. IWASE T., UEHARA Y., SHINJI H., TAJIMA A., et al. Staphylococcus epidermidis Esp. inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 465:346. doi: 10.1038/nature09074.
14. NAIK S., BOULADOUX N., WILHELM C., et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012; 337:1115–1119. doi: 10.1126/science.1225152.
15. W. E. KLOOS, M. S. MUSSELWHITE. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Microbiol. 30, 381–385 (1975).
16. A. L. BYRD, C. DEMING, S. K. B. CASSIDY, O. J. HARRISON, et. al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 9, eaal4651 (2017).
17. T. NAKATSUJI, T. H. CHEN, S. NARALA, K. A. CHUN, A. M. TWO, et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 9, eaah4680 (2017)
18. A. ZIPPERER, M. C. KONNERTH, C. LAUX, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535, 511–516 (2016).